Sains Malaysiana 52(7)(2023): 2127-2137

http://doi.org/10.17576/jsm-2023-5207-18

 

Signless Laplacian Energy of Interval-Valued Fuzzy Graph and Its Applications

(Tenaga Laplacian Tanpa Tanda bagi Graf Kabur Bernilai-Selang dan Aplikasinya)

 

MAMIKA UJIANITA ROMDHINI1,*, FAISAL AL-SHARQI2, ATHIRAH NAWAWI3, ASHRAF AL-QURAN4& HOSSEIN RASHMANLOU5

1Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Mataram, Mataram 83125, Indonesia
2
Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Iraq

3Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

4Basic Sciences Department, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia

5School of Physics, Damghan University, Damghan, Iran

 

Received: 22 February 2023/Accepted: 21 June 2023

 

Abstract

An interval-valued fuzzy graph (IVFG) emanates from a fuzzy graph (FG) where the membership is given in interval form. This framework give the user more flexibility in dealing with fuzzy information. In this paper, the signless Laplacian matrix of an interval-valued fuzzy-directed graph is defined. The eigenvalue, spectrum, spectral radius, and energy of an interval-valued fuzzy-directed graph associated with the signless Laplacian matrix are reported. In addition, the lower bound of the signless Laplacian energy in this graph is highlighted. Finally, these tools are employed to build an algorithm that helps in solving some real live problems.

 

Keywords: Energy of a graph; interval-valued fuzzy graph; signless Laplacian matrix

                                                                                          

Abstrak

Graf kabur bernilai-selang (GKBS) terpancar daripada graf kabur (GK) dengan keahliannya diberi dalam bentuk selang. Rangka kerja ini memberikan pengguna lebih keluwesan dalam menangani maklumat kabur. Dalam makalah ini, matriks Laplacian tanpa tanda bagi graf berarah kabur bernilai-selang ditakrifkan. Nilai eigen, spektrum, jejari spektrum dan tenaga bagi graf berarah kabur bernilai-selang yang dikaitkan dengan matriks Laplacian tanpa tanda dilaporkan. Di samping itu, sempadan bawah tenaga tanpa tanda Laplacian dalam graf ini diserlahkan. Akhir sekali, alat ini digunakan untuk membina algoritma yang membantu menyelesaikan beberapa masalah dalam kehidupan sebenar.

 

Kata kunci: Graf kabur bernilai-selang; matriks Laplacian tanpa tanda; tenaga graf

 

rEFERENCES

Akram, M. & Dudek, W.A. 2011. Interval-valued fuzzy graph. Computers and Mathematics with Applications 61(2): 289-299.

Al-Sharqi, F., Ahmad, A.G. & Al-Quran, A. 2022a. Interval-valued neutrosophic soft expert set from real space to complex space. Computer Modeling in Engineering and Sciences 132(1): 267-293.

Al-Sharqi, F., Ahmad, A.G. & Al-Quran, A. 2022b. Interval complex neutrosophic soft relations and their application in decision-making. Journal of Intelligent and Fuzzy Systems 43(1): 745-771.

Al-Sharqi, F., Ahmad, A.G. & Al-Quran, A. 2022c. Similarity measures on interval-complex neutrosophic soft sets with applications to decision making and medical diagnosis under uncertainty. Neutrosophic Sets and Systems 51: 495-515.

Azam, F., Mamun, A. & Nasrin, F. 2013. Anti fuzzy ideal of a ring. Annals of Fuzzy Mathematics and Informatics 5(2): 349-360.

Gheisari, Y. & Ahmad, A.G. 2012. Components in graphs of diagram groups over the union of two semigroup presentations of integers. Sains Malaysiana41(1): 129-131.

Gutman, I. 1978. The energy of graph.  Ber. Math. Statist. Sekt. Forschungszenturm Graz 103: 1-22.

Hosamani, S.M., Kulkarni, B.B., Boli, R.G. & Gadag, V.M. 2017. QSPR analysis of certain graph theocratical matrices and their corresponding energy. Applied Mathematics and Nonlinear Sciences 2(1): 131-150.

Ju, H. & Wang, L. 2009. Interval-valued fuzzy subsemigroups and subgroups associated by interval-valued fuzzy graphs. Proceedings of the WRI Global Congress on Intelligent Systems (GCIS ’09), Xiamen, China, May 2009: 484-487.

Loh, S.L., Salleh, S. & Sarmin, N.H. 2014. Linear-time heuristic partitioning technique for mapping of connected graphs into single-row networks. Sains Malaysiana43(8): 1263-1269.

Mordeson, J.N. & Chang-Shyh, P. 1994. Operation on fuzzy graphs. Information Sciences 79(3-4): 159-170.

Narayanan, A. & Mathew, S. 2013. Energy of a fuzzy graph. Annals of Fuzzy Mathematics and Informatics 6(3): 455-465.

Patra, N., Mondal, S., Pal, M. & Mondal, S. 2021. Energy of interval-valued fuzzy graphs and its application in ecological system. Journal of Applied Mathematics and Computing 68: 3327-3345.

Qiang, X., Xiao, Q-R., Khan, A., Talebi, A.A., Sivaraman, K. & Mojahedfar, M. 2022. A study on interval-valued fuzzy graph with application in energy industry management. Discrete Dynamics in Nature and Society 2022: 8499577.

Rasuli, R. 2019. Some results of anti fuzzy subrings over t-conorms. MathLAB Journal 4: 25-32.

Razak, F.A. & Expert, P. 2021. Modelling the spread of COVID-19 on Malaysian contact networks for practical reopening strategies in an institutional setting. Sains Malaysiana 50(5): 1497-1509.

Romdhini, M.U. & Nawawi, A. 2023. Degree subtraction energy of commuting and non-commuting graphs for dihedral groups. International Journal of Mathematics and Computer Science 18(3): 497-508.

Romdhini, M.U. & Nawawi, A. 2022a. Maximum and minimum degree energy of commuting graph for dihedral groups. Sains Malaysiana: 51(12): 4145-4151.

Romdhini, M.U. & Nawawi, A. 2022b. Degree sum energy of non-commuting graph for dihedral groups. Malaysian Journal of Science 41(Sp1): 34-39.

Romdhini, M.U., Nawawi, A. & Chen, C.Y. 2023. Neighbors degree sum energy of commuting and non-commuting graphs for dihedral groups. Malaysian Journal of Mathematical Sciences 17(1): 53-65.

Romdhini, M.U., Nawawi, A. & Chen, C.Y. 2022. Degree exponent sum energy of commuting graph for dihedral groups. Malaysian Journal of Science 41(Sp.1): 40-46.

Steele, J.H. 1974. The Structure of Marine Ecosystems. Harvard: Harvard University Press.

Trinajstic, N. 1992. Chemical Graph Theory. Boca Raton: CRC Press.

Talebi, A.A. & Rashmanlou, H. 2013. Isomorphism on interval-valued fuzzy graphs. Annals of Fuzzy Mathematics and Informatics 6(1): 47-58.                                                                        

Wang, Y-F. & Ma, N. 2016. Orderings a class of unicyclic graphs with respect to Hosoya and Merrifield-Simmons index. Sains Malaysiana45(1): 55-58.

Wan, C., Deng, F., Li, S., Omidbakhsh Amiri, S., Talebi, A.A. & Rashmanlou, H. 2023. Novel concepts in bipolar fuzzy graphs with applications. Journal of Mathematics 2023: 9843601.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8(3): 338-353.

 

*Corresponding author; email: mamika@unram.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous