Sains Malaysiana 52(7)(2023):
2127-2137
http://doi.org/10.17576/jsm-2023-5207-18
Signless Laplacian Energy of Interval-Valued Fuzzy Graph and Its Applications
(Tenaga Laplacian Tanpa Tanda bagi Graf Kabur Bernilai-Selang dan Aplikasinya)
MAMIKA UJIANITA ROMDHINI1,*, FAISAL AL-SHARQI2, ATHIRAH NAWAWI3, ASHRAF AL-QURAN4& HOSSEIN RASHMANLOU5
1Department of Mathematics, Faculty of Mathematics
and Natural Science, Universitas Mataram, Mataram 83125, Indonesia
2Department of Mathematics, College of Education for Pure Sciences,
University of Anbar, Iraq
3Department of Mathematics and Statistics, Faculty of Science, Universiti Putra
Malaysia, 43400 Serdang, Selangor, Malaysia
4Basic Sciences Department,
Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
5School of Physics, Damghan University, Damghan, Iran
Received: 22 February
2023/Accepted: 21 June 2023
Abstract
An interval-valued fuzzy graph (IVFG) emanates from a fuzzy graph (FG)
where the membership is given in interval form. This framework give the
user more flexibility in dealing with fuzzy information. In this paper, the
signless Laplacian matrix of an interval-valued fuzzy-directed graph is defined. The eigenvalue,
spectrum, spectral radius, and energy of an interval-valued fuzzy-directed
graph associated with the signless Laplacian matrix are reported. In addition,
the lower bound of the signless Laplacian energy in this graph is highlighted.
Finally, these tools are
employed to build an algorithm that helps in solving some real live problems.
Keywords: Energy of a graph; interval-valued fuzzy graph; signless Laplacian matrix
Abstrak
Graf kabur bernilai-selang (GKBS) terpancar daripada graf
kabur (GK) dengan keahliannya diberi dalam bentuk selang. Rangka kerja ini memberikan
pengguna lebih keluwesan dalam menangani maklumat
kabur. Dalam makalah ini, matriks Laplacian tanpa tanda bagi graf berarah kabur bernilai-selang ditakrifkan. Nilai eigen, spektrum,
jejari spektrum dan tenaga bagi graf berarah kabur bernilai-selang yang dikaitkan
dengan matriks Laplacian tanpa tanda dilaporkan. Di samping itu, sempadan bawah tenaga tanpa tanda Laplacian dalam graf ini diserlahkan. Akhir sekali, alat ini digunakan untuk
membina algoritma yang membantu menyelesaikan beberapa masalah dalam kehidupan
sebenar.
Kata
kunci: Graf kabur bernilai-selang; matriks Laplacian tanpa tanda; tenaga graf
rEFERENCES
Akram, M. & Dudek, W.A. 2011. Interval-valued fuzzy graph. Computers and Mathematics with Applications 61(2): 289-299.
Al-Sharqi, F., Ahmad, A.G. & Al-Quran, A. 2022a.
Interval-valued neutrosophic soft expert set from real space to complex space. Computer Modeling in Engineering and Sciences
132(1): 267-293.
Al-Sharqi, F., Ahmad, A.G. & Al-Quran, A. 2022b.
Interval complex neutrosophic soft relations and their application in
decision-making. Journal of Intelligent
and Fuzzy Systems 43(1): 745-771.
Al-Sharqi, F., Ahmad, A.G. & Al-Quran, A. 2022c.
Similarity measures on interval-complex neutrosophic soft sets with
applications to decision making and medical diagnosis under uncertainty. Neutrosophic Sets and Systems 51:
495-515.
Azam, F., Mamun, A. & Nasrin, F.
2013. Anti fuzzy ideal of a ring. Annals of Fuzzy
Mathematics and Informatics 5(2): 349-360.
Gheisari, Y. & Ahmad, A.G. 2012.
Components in graphs of diagram groups over the union of two semigroup
presentations of integers. Sains Malaysiana41(1): 129-131.
Gutman, I. 1978. The energy of graph. Ber. Math. Statist. Sekt. Forschungszenturm Graz 103: 1-22.
Hosamani, S.M.,
Kulkarni, B.B., Boli, R.G. & Gadag, V.M. 2017. QSPR analysis of certain
graph theocratical matrices and their corresponding energy. Applied Mathematics and Nonlinear Sciences 2(1): 131-150.
Ju, H. & Wang, L. 2009. Interval-valued fuzzy subsemigroups and subgroups associated by interval-valued fuzzy graphs. Proceedings of the WRI Global Congress on Intelligent Systems (GCIS
’09), Xiamen, China, May 2009: 484-487.
Loh, S.L., Salleh, S. & Sarmin, N.H. 2014. Linear-time heuristic partitioning
technique for mapping of connected graphs into single-row networks. Sains Malaysiana43(8):
1263-1269.
Mordeson, J.N. &
Chang-Shyh, P. 1994. Operation on
fuzzy graphs. Information Sciences 79(3-4): 159-170.
Narayanan, A. & Mathew, S. 2013. Energy of a fuzzy graph. Annals of Fuzzy Mathematics and Informatics 6(3): 455-465.
Patra, N., Mondal, S.,
Pal, M. & Mondal, S. 2021. Energy of interval-valued fuzzy graphs and its
application in ecological system. Journal of Applied Mathematics and Computing 68: 3327-3345.
Qiang, X., Xiao, Q-R., Khan, A., Talebi, A.A., Sivaraman, K. & Mojahedfar, M.
2022. A
study on interval-valued fuzzy graph with application in energy industry
management. Discrete Dynamics in Nature and Society 2022: 8499577.
Rasuli, R. 2019. Some results of anti fuzzy subrings over t-conorms. MathLAB Journal 4: 25-32.
Razak, F.A. & Expert,
P. 2021. Modelling the spread of COVID-19 on Malaysian contact networks for practical reopening strategies in an institutional setting. Sains Malaysiana 50(5): 1497-1509.
Romdhini, M.U. & Nawawi, A. 2023. Degree
subtraction energy of commuting and non-commuting graphs for dihedral groups. International
Journal of Mathematics and Computer Science 18(3): 497-508.
Romdhini, M.U. & Nawawi, A. 2022a. Maximum and
minimum degree energy of commuting graph
for dihedral groups. Sains Malaysiana: 51(12): 4145-4151.
Romdhini, M.U. & Nawawi, A. 2022b. Degree sum energy of
non-commuting graph for dihedral groups. Malaysian
Journal of Science 41(Sp1): 34-39.
Romdhini, M.U., Nawawi, A. &
Chen, C.Y. 2023. Neighbors degree sum energy of commuting and
non-commuting graphs for dihedral groups. Malaysian Journal of Mathematical
Sciences 17(1): 53-65.
Romdhini, M.U., Nawawi, A. &
Chen, C.Y. 2022. Degree exponent sum energy of commuting graph for
dihedral groups. Malaysian Journal of Science 41(Sp.1): 40-46.
Steele, J.H. 1974. The Structure of Marine
Ecosystems. Harvard: Harvard University Press.
Trinajstic, N. 1992. Chemical Graph Theory.
Boca Raton: CRC Press.
Talebi, A.A. & Rashmanlou, H. 2013.
Isomorphism on interval-valued fuzzy graphs. Annals of Fuzzy Mathematics and
Informatics 6(1): 47-58.
Wang, Y-F. & Ma, N. 2016. Orderings a class of unicyclic graphs with respect to Hosoya and Merrifield-Simmons index. Sains Malaysiana45(1): 55-58.
Wan, C., Deng, F., Li, S., Omidbakhsh Amiri, S., Talebi, A.A.
& Rashmanlou, H. 2023. Novel concepts in bipolar
fuzzy graphs with applications. Journal of Mathematics 2023: 9843601.
Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8(3):
338-353.
*Corresponding author; email: mamika@unram.ac.id
|